Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference (2205.14240v2)

Published 27 May 2022 in stat.ML, cond-mat.stat-mech, cs.LG, physics.data-an, and stat.CO

Abstract: We propose a general purpose Bayesian inference algorithm for expensive likelihoods, replacing the stochastic term in the Langevin equation with a deterministic density gradient term. The particle density is evaluated from the current particle positions using a Normalizing Flow (NF), which is differentiable and has good generalization properties in high dimensions. We take advantage of NF preconditioning and NF based Metropolis-Hastings updates for a faster convergence. We show on various examples that the method is competitive against state of the art sampling methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.