Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new variational discretization technique for initial value problems bypassing governing equations (2205.14028v2)

Published 27 May 2022 in math.NA, cs.NA, hep-lat, and physics.comp-ph

Abstract: Motivated by the fact that both the classical and quantum description of nature rest on causality and a variational principle, we develop a novel and highly versatile discretization prescription for classical initial value problems (IVPs). It is based on an optimization (action) functional with doubled degrees of freedom, which is discretized using a single regularized summation-by-parts (SBP) operator. Formulated as optimization task it allows us to obtain classical trajectories without the need to derive an equation of motion. The novel regularization we develop in this context is inspired by the weak imposition of initial data, often deployed in the modern treatment of IVPs and is implemented using affine coordinates. We demonstrate numerically the stability, accuracy and convergence properties of our approach in systems with classical equations of motion featuring both first and second order derivatives in time. onvergence properties of our approach in systems with classical equations of motion featuring both first and second order derivatives in time.

Citations (8)

Summary

We haven't generated a summary for this paper yet.