Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Distributed and Uncoordinated Cognitive Radios Resource Allocation (2205.13944v1)

Published 27 May 2022 in cs.LG

Abstract: This paper presents a novel deep reinforcement learning-based resource allocation technique for the multi-agent environment presented by a cognitive radio network where the interactions of the agents during learning may lead to a non-stationary environment. The resource allocation technique presented in this work is distributed, not requiring coordination with other agents. It is shown by considering aspects specific to deep reinforcement learning that the presented algorithm converges in an arbitrarily long time to equilibrium policies in a non-stationary multi-agent environment that results from the uncoordinated dynamic interaction between radios through the shared wireless environment. Simulation results show that the presented technique achieves a faster learning performance compared to an equivalent table-based Q-learning algorithm and is able to find the optimal policy in 99% of cases for a sufficiently long learning time. In addition, simulations show that our DQL approach requires less than half the number of learning steps to achieve the same performance as an equivalent table-based implementation. Moreover, it is shown that the use of a standard single-agent deep reinforcement learning approach may not achieve convergence when used in an uncoordinated interacting multi-radio scenario

Summary

We haven't generated a summary for this paper yet.