Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A gradient estimator via L1-randomization for online zero-order optimization with two point feedback (2205.13910v2)

Published 27 May 2022 in math.ST, stat.ML, and stat.TH

Abstract: This work studies online zero-order optimization of convex and Lipschitz functions. We present a novel gradient estimator based on two function evaluations and randomization on the $\ell_1$-sphere. Considering different geometries of feasible sets and Lipschitz assumptions we analyse online dual averaging algorithm with our estimator in place of the usual gradient. We consider two types of assumptions on the noise of the zero-order oracle: canceling noise and adversarial noise. We provide an anytime and completely data-driven algorithm, which is adaptive to all parameters of the problem. In the case of canceling noise that was previously studied in the literature, our guarantees are either comparable or better than state-of-the-art bounds obtained by Duchi et al. (2015) and Shamir (2017) for non-adaptive algorithms. Our analysis is based on deriving a new weighted Poincar\'e type inequality for the uniform measure on the $\ell_1$-sphere with explicit constants, which may be of independent interest.

Citations (19)

Summary

We haven't generated a summary for this paper yet.