2000 character limit reached
On exceptional sets of radial projections (2205.13890v1)
Published 27 May 2022 in math.CA, math.CO, and math.MG
Abstract: We prove two new exceptional set estimates for radial projections in the plane. If $K \subset \mathbb{R}{2}$ is a Borel set with $\dim_{\mathrm{H}} K > 1$, then $$\dim_{\mathrm{H}} {x \in \mathbb{R}{2} \, \setminus \, K : \dim_{\mathrm{H}} \pi_{x}(K) \leq \sigma} \leq \max{1 + \sigma - \dim_{\mathrm{H}} K,0}, \qquad \sigma \in [0,1).$$ If $K \subset \mathbb{R}{2}$ is a Borel set with $\dim_{\mathrm{H}} K \leq 1$, then $$\dim_{\mathrm{H}} {x \in \mathbb{R}{2} \, \setminus \, K : \dim_{\mathrm{H}} \pi_{x}(K) < \dim_{\mathrm{H}} K} \leq 1.$$ The finite field counterparts of both results above were recently proven by Lund, Thang, and Huong Thu. Our results resolve the planar cases of conjectures of Lund-Thang-Huong Thu, and Liu.