Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite difference schemes for the parabolic $p$-Laplace equation (2205.13656v1)

Published 26 May 2022 in math.NA, cs.NA, and math.AP

Abstract: We propose a new finite difference scheme for the degenerate parabolic equation [ \partial_t u - \mbox{div}(|\nabla u|{p-2}\nabla u) =f, \quad p\geq 2. ] Under the assumption that the data is H\"older continuous, we establish the convergence of the explicit-in-time scheme for the Cauchy problem provided a suitable stability type CFL-condition. An important advantage of our approach, is that the CFL-condition makes use of the regularity provided by the scheme to reduce the computational cost. In particular, for Lipschitz data, the CFL-condition is of the same order as for the heat equation and independent of $p$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.