Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fair Federated Learning Framework With Reinforcement Learning (2205.13415v1)

Published 26 May 2022 in cs.LG

Abstract: Federated learning (FL) is a paradigm where many clients collaboratively train a model under the coordination of a central server, while keeping the training data locally stored. However, heterogeneous data distributions over different clients remain a challenge to mainstream FL algorithms, which may cause slow convergence, overall performance degradation and unfairness of performance across clients. To address these problems, in this study we propose a reinforcement learning framework, called PG-FFL, which automatically learns a policy to assign aggregation weights to clients. Additionally, we propose to utilize Gini coefficient as the measure of fairness for FL. More importantly, we apply the Gini coefficient and validation accuracy of clients in each communication round to construct a reward function for the reinforcement learning. Our PG-FFL is also compatible to many existing FL algorithms. We conduct extensive experiments over diverse datasets to verify the effectiveness of our framework. The experimental results show that our framework can outperform baseline methods in terms of overall performance, fairness and convergence speed.

Citations (5)

Summary

We haven't generated a summary for this paper yet.