Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning What and Where: Disentangling Location and Identity Tracking Without Supervision (2205.13349v4)

Published 26 May 2022 in cs.CV

Abstract: Our brain can almost effortlessly decompose visual data streams into background and salient objects. Moreover, it can anticipate object motion and interactions, which are crucial abilities for conceptual planning and reasoning. Recent object reasoning datasets, such as CATER, have revealed fundamental shortcomings of current vision-based AI systems, particularly when targeting explicit object representations, object permanence, and object reasoning. Here we introduce a self-supervised LOCation and Identity tracking system (Loci), which excels on the CATER tracking challenge. Inspired by the dorsal and ventral pathways in the brain, Loci tackles the binding problem by processing separate, slot-wise encodings of what' andwhere'. Loci's predictive coding-like processing encourages active error minimization, such that individual slots tend to encode individual objects. Interactions between objects and object dynamics are processed in the disentangled latent space. Truncated backpropagation through time combined with forward eligibility accumulation significantly speeds up learning and improves memory efficiency. Besides exhibiting superior performance in current benchmarks, Loci effectively extracts objects from video streams and separates them into location and Gestalt components. We believe that this separation offers a representation that will facilitate effective planning and reasoning on conceptual levels.

Citations (18)

Summary

We haven't generated a summary for this paper yet.