Papers
Topics
Authors
Recent
2000 character limit reached

PLOG: Table-to-Logic Pretraining for Logical Table-to-Text Generation

Published 25 May 2022 in cs.CL | (2205.12697v2)

Abstract: Logical table-to-text generation is a task that involves generating logically faithful sentences from tables, which requires models to derive logical level facts from table records via logical inference. It raises a new challenge on the logical-level content planning of table-to-text models. However, directly learning the logical inference knowledge from table-text pairs is very difficult for neural models because of the ambiguity of natural language and the scarcity of parallel data. Hence even large-scale pre-trained LLMs present low logical fidelity on logical table-to-text. In this work, we propose a PLOG (Pretrained Logical Form Generator) framework to improve the generation fidelity. Specifically, PLOG is first pretrained on a table-to-logic-form generation (table-to-logic) task, then finetuned on downstream table-to-text tasks. The formal definition of logical forms enables us to collect large amount of accurate logical forms from tables without human annotation. In addition, PLOG can learn logical inference from table-logic pairs much more definitely than from table-text pairs. To evaluate our model, we further collect a controlled logical table-to-text dataset CONTLOG based on an existing dataset. On two benchmarks, LOGICNLG and CONTLOG, PLOG outperforms strong baselines by a large margin on the logical fidelity, demonstrating the effectiveness of table-to-logic pretraining.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.