Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Hermitian Eisenstein series of degree 2 (2205.12492v1)

Published 25 May 2022 in math.NT

Abstract: We consider the Hermitian Eisenstein series $E{(\mathbb{K})}_k$ of degree $2$ and weight $k$ associated with an imaginary-quadratic number field $\mathbb{K}$ and determine the influence of $\mathbb{K}$ on the arithmetic and the growth of its Fourier coefficients. We find that they satisfy the identity $E{{(\mathbb{K})}2}_4 = E{{(\mathbb{K})}}_8$, which is well-known for Siegel modular forms of degree $2$, if and only if $\mathbb{K} = \mathbb{Q} (\sqrt{-3})$. As an application, we show that the Eisenstein series $E{(\mathbb{K})}_k$, $k=4,6,8,10,12$ are algebraically independent whenever $\mathbb{K}\neq \mathbb{Q}(\sqrt{-3})$. The difference between the Siegel and the restriction of the Hermitian to the Siegel half-space is a cusp form in the Maass space that does not vanish identically for sufficiently large weight; however, when the weight is fixed, we will see that it tends to $0$ as the discriminant tends to $-\infty$. Finally, we show that these forms generate the space of cusp forms in the Maass Spezialschar as a module over the Hecke algebra as $\mathbb{K}$ varies over imaginary-quadratic number fields.

Summary

We haven't generated a summary for this paper yet.