Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Investigation on Applying Acoustic Feature Conversion to ASR of Adult and Child Speech (2205.12477v1)

Published 25 May 2022 in eess.AS and cs.SD

Abstract: The performance of child speech recognition is generally less satisfactory compared to adult speech due to limited amount of training data. Significant performance degradation is expected when applying an automatic speech recognition (ASR) system trained on adult speech to child speech directly, as a result of domain mismatch. The present study is focused on adult-to-child acoustic feature conversion to alleviate this mismatch. Different acoustic feature conversion approaches, including deep neural network based and signal processing based, are investigated and compared under a fair experimental setting, in which converted acoustic features from the same amount of labeled adult speech are used to train the ASR models from scratch. Experimental results reveal that not all of the conversion methods lead to ASR performance gain. Specifically, as a classic unsupervised domain adaptation method, the statistic matching does not show an effectiveness. A disentanglement-based auto-encoder (DAE) conversion framework is found to be useful and the approach of F0 normalization achieves the best performance. It is noted that the F0 distribution of converted features is an important attribute to reflect the conversion quality, while utilizing an adult-child deep classification model to make judgment is shown to be inappropriate.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wei Liu (1135 papers)
  2. Jingyu Li (48 papers)
  3. Tan Lee (70 papers)