Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Localization of triangulated categories with respect to extension-closed subcategories (2205.12116v3)

Published 24 May 2022 in math.CT

Abstract: The aim of this paper is to develop a framework for localization theory of triangulated categories $\mathcal{C}$, that is, from a given extension-closed subcategory $\mathcal{N}$ of $\mathcal{C}$, we construct a natural extriangulated structure on $\mathcal{C}$ together with an exact functor $Q:\mathcal{C}\to\widetilde{\mathcal{C}}\mathcal{N}$ satisfying a suitable universality, which unifies several phenomena. Precisely, a given subcategory $\mathcal{N}$ is thick if and only if the localization $\widetilde{\mathcal{C}}\mathcal{N}$ corresponds to a triangulated category. In this case, $Q$ is nothing other than the usual Verdier quotient. Furthermore, it is revealed that $\widetilde{\mathcal{C}}\mathcal{N}$ is an exact category if and only if $\mathcal{N}$ satisfies a generating condition $\mathsf{cone}(\mathcal{N},\mathcal{N})=\mathcal{C}$. Such an (abelian) exact localization $\widetilde{\mathcal{C}}\mathcal{N}$ provides a good understanding of some cohomological functors $\mathcal{C}\to\mathsf{Ab}$, e.g., the heart of $t$-structures on $\mathcal{C}$ and the abelian quotient of $\mathcal{C}$ by a cluster-tilting subcategory $\mathcal{N}$.

Summary

We haven't generated a summary for this paper yet.