Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Hedonic Games with Common Ranking Property (2205.11939v1)

Published 24 May 2022 in cs.GT and econ.TH

Abstract: Hedonic games are a prominent model of coalition formation, in which each agent's utility only depends on the coalition she resides. The subclass of hedonic games that models the formation of general partnerships, where output is shared equally among affiliates, is referred to as hedonic games with common ranking property (HGCRP). Aside from their economic motivation, HGCRP came into prominence since they are guaranteed to have core stable solutions that can be found efficiently. We improve upon existing results by proving that every instance of HGCRP has a solution that is Pareto optimal, core stable and individually stable. The economic significance of this result is that efficiency is not to be totally sacrificed for the sake of stability in HGCRP. We establish that finding such a solution is {\bf NP-hard} even if the sizes of the coalitions are bounded above by $3$; however, it is polynomial time solvable if the sizes of the coalitions are bounded above by $2$. We show that the gap between the total utility of a core stable solution and that of the socially-optimal solution (OPT) is bounded above by $n$, where $n$ is the number of agents, and that this bound is tight. Our investigations reveal that computing OPT is inapproximable within better than $O(n{1-\epsilon})$ for any fixed $\epsilon > 0$, and that this inapproximability lower bound is polynomially tight. However, OPT can be computed in polynomial time if the sizes of the coalitions are bounded above by $2$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.