Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical complexity and the road to equilibrium in many-body chaotic quantum systems (2205.11777v2)

Published 24 May 2022 in cond-mat.stat-mech

Abstract: In this work we revisit the problem of equilibration in isolated many-body interacting quantum systems. We pay particular attention to quantum chaotic Hamiltonians, and rather than focusing on the properties of the asymptotic states and how they adhere to the predictions of the Eigenstate Thermalization Hypothesis, we focus on the equilibration process itself, i.e., \emph{the road to equilibrium}. Along the road to equilibrium the diagonal ensembles obey an emergent form of the second law of thermodynamics and we provide an information theoretic proof of this fact. With this proof at hand we show that the road to equilibrium is nothing but a hierarchy in time of diagonal ensembles. Furthermore, introducing the notions of statistical complexity and the entropy-complexity plane, we investigate the uniqueness of the road to equilibrium in a generic many-body system by comparing its trajectories in the entropy-complexity plane to those generated by a random Hamiltonian. Finally by treating the random Hamiltonian as a perturbation we analyzed the stability of entropy-complexity trajectories associated with the road to equilibrium for a chaotic Hamiltonian and different types of initial states.

Summary

We haven't generated a summary for this paper yet.