Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dataset for Sentence Retrieval for Open-Ended Dialogues (2205.11685v1)

Published 24 May 2022 in cs.IR

Abstract: We address the task of sentence retrieval for open-ended dialogues. The goal is to retrieve sentences from a document corpus that contain information useful for generating the next turn in a given dialogue. Prior work on dialogue-based retrieval focused on specific types of dialogues: either conversational QA or conversational search. To address a broader scope of this task where any type of dialogue can be used, we constructed a dataset that includes open-ended dialogues from Reddit, candidate sentences from Wikipedia for each dialogue and human annotations for the sentences. We report the performance of several retrieval baselines, including neural retrieval models, over the dataset. To adapt neural models to the types of dialogues in the dataset, we explored an approach to induce a large-scale weakly supervised training data from Reddit. Using this training set significantly improved the performance over training on the MS MARCO dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Itay Harel (3 papers)
  2. Hagai Taitelbaum (6 papers)
  3. Idan Szpektor (47 papers)
  4. Oren Kurland (17 papers)
Citations (2)