Schur complement dominant operator matrices (2205.11653v1)
Abstract: We propose a method for the spectral analysis of unbounded operator matrices in a general setting which fully abstains from standard perturbative arguments. Rather than requiring the matrix to act in a Hilbert space $\mathcal{H}$, we extend its action to a suitable distributional triple $\mathcal{D} \subset \mathcal{H} \subset \mathcal{D}-$ and restrict it to its maximal domain in $\mathcal{H}$. The crucial point in our approach is the choice of the spaces $\mathcal{D}$ and $\mathcal{D}-$ which are essentially determined by the Schur complement of the matrix. We show spectral equivalence between the resulting operator matrix in $\mathcal{H}$ and its Schur complement, which allows to pass from a suitable representation of the Schur complement (e.g. by generalised form methods) to a representation of the operator matrix. We thereby generalise classical spectral equivalence results imposing standard dominance patterns. The abstract results are applied to damped wave equations with possibly unbounded and/or singular damping, to Dirac operators with Coulomb-type potentials, as well as to generic second order matrix differential operators. By means of our methods, previous regularity assumptions can be weakened substantially.