Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters (2205.11619v1)

Published 23 May 2022 in math.CA

Abstract: Given an $m$-tuple of weights $\vec{v}=(v_1,\dots,v_m)$, we characterize the classes of pairs $(w,\vec{v})$ involved with the boundedness properties of the multilinear fractional integral operator from $\prod_{i=1}mL{p_i}\left(v_i{p_i}\right)$ into suitable Lipschitz spaces associated to a parameter $\delta$, $\mathcal{L}_w(\delta)$. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved with the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this region.

Summary

We haven't generated a summary for this paper yet.