Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and Stability of Nonequilibrium Steady States of Nernst-Planck-Navier-Stokes Systems (2205.11553v1)

Published 23 May 2022 in math.AP

Abstract: We consider the Nernst-Planck-Navier-Stokes system in a bounded domain of ${\mathbb {R}}d$, $d=2,3$ with general nonequilibrium Dirichlet boundary conditions for the ionic concentrations. We prove the existence of smooth steady state solutions and present a sufficient condition in terms of only the boundary data that guarantees that these solutions have nonzero fluid velocity. We show that time evolving solutions are ultimately bounded uniformly, independently of their initial size. In addition, we consider one dimensional steady states with steady nonzero currents and show that they are globally nonlinearly stable as solutions in a three dimensional periodic strip, if the currents are sufficiently weak.

Summary

We haven't generated a summary for this paper yet.