Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning differential equations from data (2205.11483v1)

Published 23 May 2022 in cs.LG and math.DS

Abstract: Differential equations are used to model problems that originate in disciplines such as physics, biology, chemistry, and engineering. In recent times, due to the abundance of data, there is an active search for data-driven methods to learn Differential equation models from data. However, many numerical methods often fall short. Advancements in neural networks and deep learning, have motivated a shift towards data-driven deep learning methods of learning differential equations from data. In this work, we propose a forward-Euler based neural network model and test its performance by learning ODEs such as the FitzHugh-Nagumo equations from data using different number of hidden layers and different neural network width.

Summary

We haven't generated a summary for this paper yet.