Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Loop-corrected subleading soft theorem and the celestial stress-tensor (2205.11477v3)

Published 23 May 2022 in hep-th and gr-qc

Abstract: We demonstrate that the one-loop exact subleading soft graviton theorem automatically follows from conservation of the BMS charges, provided that the hard and soft fluxes separately represent the extended BMS algebra at null infinity. This confirms that superrotations are genuine symmetries of the gravitational $\mathcal{S}$-matrix beyond the semiclassical regime. In contrast with a previous proposal, the celestial stress-tensor accounting for the one-loop corrections follows from the gravitational phase space analysis and does not require the addition of divergent counterterms. In addition, we show that the symplectic form on the radiative phase space factorises into hard and soft sectors, and that the resulting canonical generators precisely coincide with the correct BMS fluxes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (91)
  1. A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory. Princeton University Press, 2018.
  2. T. McLoughlin, A. Puhm, and A.-M. Raclariu, “The SAGEX Review on Scattering Amplitudes, Chapter 11: Soft Theorems and Celestial Amplitudes,” 2203.13022.
  3. A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, 1312.2229.
  4. T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, 1401.7026.
  5. G. Barnich and C. Troessaert, “Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited,” Phys. Rev. Lett. 105 (2010) 111103, 0909.2617.
  6. F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” 1404.4091.
  7. D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity 𝒮𝒮\mathcal{S}caligraphic_S-matrix,” JHEP 08 (2014) 058, 1406.3312.
  8. J. de Boer and S. N. Solodukhin, “A Holographic reduction of Minkowski space-time,” Nucl. Phys. B665 (2003) 545–593, hep-th/0303006.
  9. G. Barnich and C. Troessaert, “Aspects of the BMS/CFT correspondence,” JHEP 05 (2010) 062, 1001.1541.
  10. S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D96 (2017), no. 6, 065026, 1701.00049.
  11. S. Pasterski, “Lectures on celestial amplitudes,” Eur. Phys. J. C 81 (2021), no. 12, 1062, 2108.04801.
  12. A.-M. Raclariu, “Lectures on Celestial Holography,” 2107.02075.
  13. D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, “2D Stress Tensor for 4D Gravity,” Phys. Rev. Lett. 119 (2017), no. 12, 121601, 1609.00282.
  14. Z. Bern, S. Davies, and J. Nohle, “On Loop Corrections to Subleading Soft Behavior of Gluons and Gravitons,” Phys. Rev. D 90 (2014), no. 8, 085015, 1405.1015.
  15. B. Sahoo and A. Sen, “Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions,” JHEP 02 (2019) 086, 1808.03288.
  16. A. Laddha and A. Sen, “Observational Signature of the Logarithmic Terms in the Soft Graviton Theorem,” Phys. Rev. D 100 (2019), no. 2, 024009, 1806.01872.
  17. M. Campiglia and A. Laddha, “Loop Corrected Soft Photon Theorem as a Ward Identity,” JHEP 10 (2019) 287, 1903.09133.
  18. T. He, D. Kapec, A.-M. Raclariu, and A. Strominger, “Loop-Corrected Virasoro Symmetry of 4D Quantum Gravity,” JHEP 08 (2017) 050, 1701.00496.
  19. G. Compère, A. Fiorucci, and R. Ruzziconi, “Superboost transitions, refraction memory and super-Lorentz charge algebra,” JHEP 11 (2018) 200, 1810.00377.
  20. G. Compère and J. Long, “Vacua of the gravitational field,” JHEP 07 (2016) 137, 1601.04958.
  21. F. Alessio and M. Arzano, “Note on the symplectic structure of asymptotically flat gravity and BMS symmetries,” Phys. Rev. D 100 (2019), no. 4, 044028, 1906.05036.
  22. M. Campiglia and A. Laddha, “BMS Algebra, Double Soft Theorems, and All That,” 2106.14717.
  23. M. Campiglia and J. Peraza, “Generalized BMS charge algebra,” Phys. Rev. D 101 (2020), no. 10, 104039, 2002.06691.
  24. G. Compère, A. Fiorucci, and R. Ruzziconi, “The ΛΛ\Lambdaroman_Λ-BMS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT charge algebra,” JHEP 10 (2020) 205, 2004.10769.
  25. L. Donnay and R. Ruzziconi, “BMS flux algebra in celestial holography,” JHEP 11 (2021) 040, 2108.11969.
  26. A. Fiorucci, Leaky covariant phase spaces: Theory and application to Λnormal-Λ\Lambdaroman_Λ-BMS symmetry. PhD thesis, Brussels U., Intl. Solvay Inst., Brussels, 2021. 2112.07666.
  27. G. Barnich and R. Ruzziconi, “Coadjoint representation of the BMS group on celestial Riemann surfaces,” JHEP 06 (2021) 079, 2103.11253.
  28. S. Pasterski, “A Shorter Path to Celestial Currents,” 2201.06805.
  29. R. Ruzziconi, On the Various Extensions of the BMS Group. PhD thesis, U. Brussels, 2020. 2009.01926.
  30. L. Freidel and D. Pranzetti, “Gravity from symmetry: duality and impulsive waves,” JHEP 04 (2022) 125, 2109.06342.
  31. L. Freidel, D. Pranzetti, and A.-M. Raclariu, “Sub-subleading Soft Graviton Theorem from Asymptotic Einstein’s Equations,” 2111.15607.
  32. L. Freidel, D. Pranzetti, and A.-M. Raclariu, “Higher spin dynamics in gravity and w1+∞subscript𝑤1w_{1+\infty}italic_w start_POSTSUBSCRIPT 1 + ∞ end_POSTSUBSCRIPT celestial symmetries,” 2112.15573.
  33. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A269 (1962) 21.
  34. R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A270 (1962) 103–126.
  35. R. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev. 128 (1962) 2851–2864.
  36. G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS CNCFG (2010) 010, 1102.4632. [Ann. U. Craiova Phys.21,S11(2011)].
  37. A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” JHEP 01 (2016) 086, 1411.5745.
  38. Springer US, Boston, MA, 1977.
  39. K. Nguyen, “Schwarzian Transformations at Null Infinity o⁢r𝑜𝑟oritalic_o italic_r The Unobservable Sector of Celestial Holography,” 2201.09640.
  40. L. Blanchet and T. Damour, “Tail Transported Temporal Correlations in the Dynamics of a Gravitating System,” Phys. Rev. D 37 (1988) 1410.
  41. L. Blanchet and G. Schaefer, “Gravitational wave tails and binary star systems,” Class. Quant. Grav. 10 (1993) 2699–2721.
  42. L. Blanchet, G. Compère, G. Faye, R. Oliveri, and A. Seraj, “Multipole expansion of gravitational waves: from harmonic to Bondi coordinates,” JHEP 02 (2021) 029, 2011.10000.
  43. J. Lee and R. M. Wald, “Local symmetries and constraints,” J. Math. Phys. 31 (1990) 725–743.
  44. R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48 (1993), no. 8, R3427–R3431, gr-qc/9307038.
  45. V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50 (1994) 846–864, gr-qc/9403028.
  46. G. Barnich and F. Brandt, “Covariant theory of asymptotic symmetries, conservation laws and central charges,” Nucl. Phys. B633 (2002) 3–82, hep-th/0111246.
  47. R. M. Wald and A. Zoupas, “A General definition of ‘conserved quantities’ in general relativity and other theories of gravity,” Phys. Rev. D61 (2000) 084027, gr-qc/9911095.
  48. G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 12 (2011) 105, 1106.0213.
  49. L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi, “A Carrollian Perspective on Celestial Holography,” 2202.04702.
  50. E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3 (1962) 566–578.
  51. E. T. Newman and T. W. J. Unti, “Behavior of Asymptotically Flat Empty Spaces,” J. Math. Phys. 3 (1962), no. 5, 891.
  52. H. Godazgar, M. Godazgar, and C. N. Pope, “New dual gravitational charges,” Phys. Rev. D 99 (2019), no. 2, 024013, 1812.01641.
  53. U. Kol and M. Porrati, “Properties of Dual Supertranslation Charges in Asymptotically Flat Spacetimes,” Phys. Rev. D 100 (2019), no. 4, 046019, 1907.00990.
  54. R. Oliveri and S. Speziale, “A note on dual gravitational charges,” JHEP 12 (2020) 079, 2010.01111.
  55. H. Godazgar, M. Godazgar, and M. J. Perry, “Asymptotic gravitational charges,” Phys. Rev. Lett. 125 (2020), no. 10, 101301, 2007.01257.
  56. H. Godazgar, M. Godazgar, and M. J. Perry, “Hamiltonian derivation of dual gravitational charges,” JHEP 09 (2020) 084, 2007.07144.
  57. A. Ashtekar and R. O. Hansen, “A unified treatment of null and spatial infinity in general relativity. I - Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity,” J. Math. Phys. 19 (1978) 1542–1566.
  58. A. Ashtekar and M. Streubel, “Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity,” Proc. Roy. Soc. Lond. A376 (1981) 585–607.
  59. A. Ashtekar, “Asymptotic Quantization of the Gravitational Field,” Phys. Rev. Lett. 46 (1981) 573–576.
  60. G. Compère and A. Fiorucci, “Advanced Lectures on General Relativity,” 1801.07064.
  61. R. Ruzziconi, “Asymptotic Symmetries in the Gauge Fixing Approach and the BMS Group,” PoS Modave2019 (2020) 003, 1910.08367.
  62. I. Papadimitriou and K. Skenderis, “Thermodynamics of asymptotically locally AdS spacetimes,” JHEP 08 (2005) 004, hep-th/0505190.
  63. G. Compere and D. Marolf, “Setting the boundary free in AdS/CFT,” Class. Quant. Grav. 25 (2008) 195014, 0805.1902.
  64. D. Harlow and J.-Q. Wu, “Covariant phase space with boundaries,” JHEP 10 (2020) 146, 1906.08616.
  65. L. Freidel, M. Geiller, and D. Pranzetti, “Edge modes of gravity. Part I. Corner potentials and charges,” JHEP 11 (2020) 026, 2006.12527.
  66. A. Fiorucci and R. Ruzziconi, “Charge algebra in Al(A)dSn𝑛{}_{n}start_FLOATSUBSCRIPT italic_n end_FLOATSUBSCRIPT spacetimes,” JHEP 05 (2021) 210, 2011.02002.
  67. L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale, “The Weyl BMS group and Einstein’s equations,” JHEP 07 (2021) 170, 2104.05793.
  68. V. Chandrasekaran, E. E. Flanagan, I. Shehzad, and A. J. Speranza, “A general framework for gravitational charges and holographic renormalization,” 2111.11974.
  69. E. Himwich, S. A. Narayanan, M. Pate, N. Paul, and A. Strominger, “The Soft 𝒮𝒮\mathcal{S}caligraphic_S-Matrix in Gravity,” JHEP 09 (2020) 129, 2005.13433.
  70. S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965) B516–B524.
  71. M. Herberthson and M. Ludvigsen, “A relationship between future and past null infinity,” Gen. Rel. Grav. 24 (1992), no. 11, 1185–1193.
  72. C. Troessaert, “The BMS4 algebra at spatial infinity,” Class. Quant. Grav. 35 (2018), no. 7, 074003, 1704.06223.
  73. M. Henneaux and C. Troessaert, “BMS Group at Spatial Infinity: the Hamiltonian (ADM) approach,” JHEP 03 (2018) 147, 1801.03718.
  74. M. Henneaux and C. Troessaert, “Hamiltonian structure and asymptotic symmetries of the Einstein-Maxwell system at spatial infinity,” JHEP 07 (2018) 171, 1805.11288.
  75. K. Prabhu, “Conservation of asymptotic charges from past to future null infinity: Supermomentum in general relativity,” JHEP 03 (2019) 148, 1902.08200.
  76. K. Prabhu and I. Shehzad, “Conservation of asymptotic charges from past to future null infinity: Lorentz charges in general relativity,” 2110.04900.
  77. M. M. A. Mohamed and J. A. V. Kroon, “Asymptotic charges for spin-1 and spin-2 fields at the critical sets of null infinity,” 2112.03890.
  78. F. Capone, K. Nguyen, and E. Parisini, “Charge and Antipodal Matching across Spatial Infinity,” 2204.06571.
  79. M. Campiglia and A. Laddha, “Asymptotic symmetries of gravity and soft theorems for massive particles,” JHEP 12 (2015) 094, 1509.01406.
  80. S. G. Naculich and H. J. Schnitzer, “Eikonal methods applied to gravitational scattering amplitudes,” JHEP 05 (2011) 087, 1101.1524.
  81. C. D. White, “Factorization Properties of Soft Graviton Amplitudes,” JHEP 05 (2011) 060, 1103.2981.
  82. N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08 (2021) 062, 2012.04208.
  83. K. Nguyen and J. Salzer, “Celestial IR divergences and the effective action of supertranslation modes,” JHEP 09 (2021) 144, 2105.10526.
  84. S. He, Y.-t. Huang, and C. Wen, “Loop Corrections to Soft Theorems in Gauge Theories and Gravity,” JHEP 12 (2014) 115, 1405.1410.
  85. F. Cachazo and E. Y. Yuan, “Are Soft Theorems Renormalized?,” 1405.3413.
  86. S. Pasterski and S.-H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D96 (2017), no. 6, 065022, 1705.01027.
  87. S. Pasterski, S.-H. Shao, and A. Strominger, “Gluon Amplitudes as 2d Conformal Correlators,” Phys. Rev. D96 (2017), no. 8, 085006, 1706.03917.
  88. G. Barnich and P.-H. Lambert, “A Note on the Newman-Unti group and the BMS charge algebra in terms of Newman-Penrose coefficients,” Adv. Math. Phys. 2012 (2012) 197385, 1102.0589.
  89. G. Barnich and C. Troessaert, “Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity,” JHEP 11 (2013) 003, 1309.0794.
  90. G. Barnich, P. Mao, and R. Ruzziconi, “BMS current algebra in the context of the Newman–Penrose formalism,” Class. Quant. Grav. 37 (2020), no. 9, 095010, 1910.14588.
  91. M. Campiglia, “Null to time-like infinity Green’s functions for asymptotic symmetries in Minkowski spacetime,” JHEP 11 (2015) 160, 1509.01408.
Citations (33)

Summary

We haven't generated a summary for this paper yet.