Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Rank Univariate Sum of Squares Has No Spurious Local Minima (2205.11466v2)

Published 23 May 2022 in math.OC, cs.NA, math.AG, and math.NA

Abstract: We study the problem of decomposing a polynomial $p$ into a sum of $r$ squares by minimizing a quadratically penalized objective $f_p(\mathbf{u}) = \left\lVert \sum_{i=1}r u_i2 - p\right\lVert2$. This objective is nonconvex and is equivalent to the rank-$r$ Burer-Monteiro factorization of a semidefinite program (SDP) encoding the sum of squares decomposition. We show that for all univariate polynomials $p$, if $r \ge 2$ then $f_p(\mathbf{u})$ has no spurious second-order critical points, showing that all local optima are also global optima. This is in contrast to previous work showing that for general SDPs, in addition to genericity conditions, $r$ has to be roughly the square root of the number of constraints (the degree of $p$) for there to be no spurious second-order critical points. Our proof uses tools from computational algebraic geometry and can be interpreted as constructing a certificate using the first- and second-order necessary conditions. We also show that by choosing a norm based on sampling equally-spaced points on the circle, the gradient $\nabla f_p$ can be computed in nearly linear time using fast Fourier transforms. Experimentally we demonstrate that this method has very fast convergence using first-order optimization algorithms such as L-BFGS, with near-linear scaling to million-degree polynomials.

Citations (8)

Summary

We haven't generated a summary for this paper yet.