Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional SEIR Model and Data-Driven Predictions of COVID-19 Dynamics of Omicron Variant (2205.11379v1)

Published 23 May 2022 in math.NA, cs.NA, physics.soc-ph, and q-bio.PE

Abstract: We study the dynamic evolution of COVID-19 cased by the Omicron variant via a fractional susceptible-exposedinfected-removed (SEIR) model. Preliminary data suggest that the symptoms of Omicron infection are not prominent and the transmission is therefore more concealed, which causes a relatively slow increase in the detected cases of the new infected at the beginning of the pandemic. To characterize the specific dynamics, the Caputo-Hadamard fractional derivative is adopted to refined the classical SEIR model. Based on the reported data, we infer the fractional order, timedependent parameters, as well as unobserved dynamics of the fractional SEIR model via fractional physics-informed neural networks (fPINNs). Then, we make short-time predictions using the learned fractional SEIR model.

Citations (52)

Summary

We haven't generated a summary for this paper yet.