Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

[Re] Distilling Knowledge via Knowledge Review (2205.11246v1)

Published 18 May 2022 in cs.CV and cs.LG

Abstract: This effort aims to reproduce the results of experiments and analyze the robustness of the review framework for knowledge distillation introduced in the CVPR '21 paper 'Distilling Knowledge via Knowledge Review' by Chen et al. Previous works in knowledge distillation only studied connections paths between the same levels of the student and the teacher, and cross-level connection paths had not been considered. Chen et al. propose a new residual learning framework to train a single student layer using multiple teacher layers. They also design a novel fusion module to condense feature maps across levels and a loss function to compare feature information stored across different levels to improve performance. In this work, we consistently verify the improvements in test accuracy across student models as reported in the original paper and study the effectiveness of the novel modules introduced by conducting ablation studies and new experiments.

Summary

We haven't generated a summary for this paper yet.