Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Multi-Label Image Classification with Complementary Parallel Self-Distillation (2205.10986v1)

Published 23 May 2022 in cs.CV and cs.AI

Abstract: Multi-Label Image Classification (MLIC) approaches usually exploit label correlations to achieve good performance. However, emphasizing correlation like co-occurrence may overlook discriminative features of the target itself and lead to model overfitting, thus undermining the performance. In this study, we propose a generic framework named Parallel Self-Distillation (PSD) for boosting MLIC models. PSD decomposes the original MLIC task into several simpler MLIC sub-tasks via two elaborated complementary task decomposition strategies named Co-occurrence Graph Partition (CGP) and Dis-occurrence Graph Partition (DGP). Then, the MLIC models of fewer categories are trained with these sub-tasks in parallel for respectively learning the joint patterns and the category-specific patterns of labels. Finally, knowledge distillation is leveraged to learn a compact global ensemble of full categories with these learned patterns for reconciling the label correlation exploitation and model overfitting. Extensive results on MS-COCO and NUS-WIDE datasets demonstrate that our framework can be easily plugged into many MLIC approaches and improve performances of recent state-of-the-art approaches. The explainable visual study also further validates that our method is able to learn both the category-specific and co-occurring features. The source code is released at https://github.com/Robbie-Xu/CPSD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jiazhi Xu (1 paper)
  2. Sheng Huang (44 papers)
  3. Fengtao Zhou (17 papers)
  4. Luwen Huangfu (12 papers)
  5. Daniel Zeng (18 papers)
  6. Bo Liu (484 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.