Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eigenvalue bounds of the Kirchhoff Laplacian (2205.10968v4)

Published 23 May 2022 in math.CO and cs.DM

Abstract: We prove that each eigenvalue l(k) of the Kirchhoff Laplacian K of a graph or quiver is bounded above by d(k)+d(k-1) for all k in {1,...,n}. Here l(1),...,l(n) is a non-decreasing list of the eigenvalues of K and d(1),..,d(n) is a non-decreasing list of vertex degrees with the additional assumption d(0)=0. We also prove that in general the weak Brouwer-Haemers lower bound d(k) + (n-k) holds for all eigenvalues l(k) of the Kirchhoff matrix of a quiver.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com