Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-resolution European daily soil moisture derived with machine learning (2003-2020) (2205.10753v1)

Published 22 May 2022 in physics.ao-ph

Abstract: Machine learning (ML) has emerged as a novel tool for generating large-scale land surface data in recent years. ML can learn the relationship between input and target, e.g. meteorological variables and in-situ soil moisture, and then estimate soil moisture across space and time, independently of prior physics-based knowledge. Here we develop a high-resolution (0.1{\deg}) daily soil moisture dataset in Europe (SoMo.ml-EU) using Long Short-Term Memory trained with in-situ measurements. The resulting dataset covers three vertical layers and the period 2003-2020. Compared to its previous version with a lower spatial resolution (0.25{\deg}), it shows a closer agreement with independent in-situ data in terms of temporal variation, demonstrating the enhanced usefulness of in-situ observations when processed jointly with high-resolution meteorological data. Regional comparison with other gridded datasets also demonstrates the ability of SoMo.ml-EU in describing the variability of soil moisture, including drought conditions. As a result, our new dataset will benefit regional studies requiring high-resolution observation-based soil moisture, such as hydrological and agricultural analyses. The SoMo.ml-EU is available at figshare.

Summary

We haven't generated a summary for this paper yet.