GL-RG: Global-Local Representation Granularity for Video Captioning (2205.10706v2)
Abstract: Video captioning is a challenging task as it needs to accurately transform visual understanding into natural language description. To date, state-of-the-art methods inadequately model global-local representation across video frames for caption generation, leaving plenty of room for improvement. In this work, we approach the video captioning task from a new perspective and propose a GL-RG framework for video captioning, namely a \textbf{G}lobal-\textbf{L}ocal \textbf{R}epresentation \textbf{G}ranularity. Our GL-RG demonstrates three advantages over the prior efforts: 1) we explicitly exploit extensive visual representations from different video ranges to improve linguistic expression; 2) we devise a novel global-local encoder to produce rich semantic vocabulary to obtain a descriptive granularity of video contents across frames; 3) we develop an incremental training strategy which organizes model learning in an incremental fashion to incur an optimal captioning behavior. Experimental results on the challenging MSR-VTT and MSVD datasets show that our DL-RG outperforms recent state-of-the-art methods by a significant margin. Code is available at \url{https://github.com/ylqi/GL-RG}.
- Liqi Yan (9 papers)
- Qifan Wang (129 papers)
- Yiming Cui (80 papers)
- Fuli Feng (143 papers)
- Xiaojun Quan (52 papers)
- Xiangyu Zhang (328 papers)
- Dongfang Liu (44 papers)