Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CORAL: Contextual Response Retrievability Loss Function for Training Dialog Generation Models (2205.10558v3)

Published 21 May 2022 in cs.CL

Abstract: In the field of Natural Language Processing, there are many tasks that can be tackled effectively using the cross-entropy (CE) loss function. However, the task of dialog generation poses unique challenges for CE loss. This is because CE loss assumes that, for any given input, the only possible output is the one available as the ground truth in the training dataset. But, in dialog generation, there can be multiple valid responses (for a given context) that not only have different surface forms but can also be semantically different. Furthermore, CE loss computation for the dialog generation task does not take the input context into consideration and, hence, it grades the response irrespective of the context. To grade the generated response for qualities like relevance, engagingness, etc., the loss function should depend on both the context and the generated response. To address these limitations, this paper proposes CORAL, a novel loss function based on a reinforcement learning (RL) view of the dialog generation task with a reward function that estimates human preference for generated responses while considering both the context and the response. Furthermore, to overcome challenges such as high sample complexity of RL training and a large action space, we propose a mix-policy training algorithm. Notably, using CORAL we can train dialog generation models without assuming the ground-truth as the only correct response. Extensive comparisons on benchmark datasets demonstrate that CORAL based models outperform strong state-of-the-art baseline models of different sizes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bishal Santra (10 papers)
  2. Ravi Ghadia (2 papers)
  3. Manish Gupta (67 papers)
  4. Pawan Goyal (170 papers)