Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Count Anything: Reference-less Class-agnostic Counting with Weak Supervision (2205.10203v2)

Published 20 May 2022 in cs.CV

Abstract: Current class-agnostic counting methods can generalise to unseen classes but usually require reference images to define the type of object to be counted, as well as instance annotations during training. Reference-less class-agnostic counting is an emerging field that identifies counting as, at its core, a repetition-recognition task. Such methods facilitate counting on a changing set composition. We show that a general feature space with global context can enumerate instances in an image without a prior on the object type present. Specifically, we demonstrate that regression from vision transformer features without point-level supervision or reference images is superior to other reference-less methods and is competitive with methods that use reference images. We show this on the current standard few-shot counting dataset FSC-147. We also propose an improved dataset, FSC-133, which removes errors, ambiguities, and repeated images from FSC-147 and demonstrate similar performance on it. To the best of our knowledge, we are the first weakly-supervised reference-less class-agnostic counting method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Michael Hobley (2 papers)
  2. Victor Prisacariu (11 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.