Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

The Fairness of Credit Scoring Models (2205.10200v2)

Published 20 May 2022 in stat.ML, cs.LG, and q-fin.RM

Abstract: In credit markets, screening algorithms aim to discriminate between good-type and bad-type borrowers. However, when doing so, they can also discriminate between individuals sharing a protected attribute (e.g. gender, age, racial origin) and the rest of the population. This can be unintentional and originate from the training dataset or from the model itself. We show how to formally test the algorithmic fairness of scoring models and how to identify the variables responsible for any lack of fairness. We then use these variables to optimize the fairness-performance trade-off. Our framework provides guidance on how algorithmic fairness can be monitored by lenders, controlled by their regulators, improved for the benefit of protected groups, while still maintaining a high level of forecasting accuracy.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube