Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Time Series Representation Learning via Cross Reconstruction Transformer (2205.09928v2)

Published 20 May 2022 in cs.LG

Abstract: Unsupervised/self-supervised representation learning in time series is critical since labeled samples are usually scarce in real-world scenarios. Existing approaches mainly leverage the contrastive learning framework, which automatically learns to understand the similar and dissimilar data pairs. Nevertheless, they are restricted to the prior knowledge of constructing pairs, cumbersome sampling policy, and unstable performances when encountering sampling bias. Also, few works have focused on effectively modeling across temporal-spectral relations to extend the capacity of representations. In this paper, we aim at learning representations for time series from a new perspective and propose Cross Reconstruction Transformer (CRT) to solve the aforementioned problems in a unified way. CRT achieves time series representation learning through a cross-domain dropping-reconstruction task. Specifically, we transform time series into the frequency domain and randomly drop certain parts in both time and frequency domains. Dropping can maximally preserve the global context compared to cropping and masking. Then a transformer architecture is utilized to adequately capture the cross-domain correlations between temporal and spectral information through reconstructing data in both domains, which is called Dropped Temporal-Spectral Modeling. To discriminate the representations in global latent space, we propose Instance Discrimination Constraint to reduce the mutual information between different time series and sharpen the decision boundaries. Additionally, we propose a specified curriculum learning strategy to optimize the CRT, which progressively increases the dropping ratio in the training process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Q. Tan, M. Ye, A. J. Ma, B. Yang, T. C.-F. Yip, G. L.-H. Wong, and P. C. Yuen, “Explainable uncertainty-aware convolutional recurrent neural network for irregular medical time series,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 10, pp. 4665–4679, 2021.
  2. F. M. Bianchi, S. Scardapane, S. Løkse, and R. Jenssen, “Reservoir computing approaches for representation and classification of multivariate time series,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 5, pp. 2169–2179, 2021.
  3. Y. Huang, G. G. Yen, and V. S. Tseng, “Snippet policy network v2: Knee-guided neuroevolution for multi-lead ecg early classification,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2022.
  4. T. Bradde, G. Fracastoro, and G. C. Calafiore, “Multiclass sparse centroids with application to fast time series classification,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–6, 2021.
  5. W. Zheng and J. Hu, “Multivariate time series prediction based on temporal change information learning method,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2022.
  6. K. Bandara, C. Bergmeir, and H. Hewamalage, “Lstm-msnet: Leveraging forecasts on sets of related time series with multiple seasonal patterns,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 4, pp. 1586–1599, 2021.
  7. A. Garg, W. Zhang, J. Samaran, R. Savitha, and C.-S. Foo, “An evaluation of anomaly detection and diagnosis in multivariate time series,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2508–2517, 2022.
  8. S.-E. Benkabou, K. Benabdeslem, V. Kraus, K. Bourhis, and B. Canitia, “Local anomaly detection for multivariate time series by temporal dependency based on poisson model,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 11, pp. 6701–6711, 2022.
  9. Q. Chen, A. Zhang, T. Huang, Q. He, and Y. Song, “Imbalanced dataset-based echo state networks for anomaly detection,” Neural Computing and Applications, vol. 32, no. 8, pp. 3685–3694, 2020.
  10. A. Hyvarinen and H. Morioka, “Unsupervised feature extraction by time-contrastive learning and nonlinear ica,” Advances in Neural Information Processing Systems, vol. 29, 2016.
  11. X. Lan, D. Ng, S. Hong, and M. Feng, “Intra-inter subject self-supervised learning for multivariate cardiac signals,” arXiv preprint arXiv:2109.08908, 2021.
  12. J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, “Unsupervised scalable representation learning for multivariate time series,” Advances in neural information processing systems, vol. 32, 2019.
  13. S. Tonekaboni, D. Eytan, and A. Goldenberg, “Unsupervised representation learning for time series with temporal neighborhood coding,” arXiv preprint arXiv:2106.00750, 2021.
  14. L. Yang and S. Hong, “Unsupervised time-series representation learning with iterative bilinear temporal-spectral fusion,” in International Conference on Machine Learning.   PMLR, 2022, pp. 25 038–25 054.
  15. A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.
  16. M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new estimation principle for unnormalized statistical models,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, Y. W. Teh and M. Titterington, Eds., vol. 9, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, pp. 297–304.
  17. E. Eldele, M. Ragab, Z. Chen, M. Wu, C. K. Kwoh, X. Li, and C. Guan, “Time-series representation learning via temporal and contextual contrasting,” in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, Z.-H. Zhou, Ed.   International Joint Conferences on Artificial Intelligence Organization, 8 2021, pp. 2352–2359.
  18. G. Liu, Y. Liao, F. Wang, B. Zhang, L. Zhang, X. Liang, X. Wan, S. Li, Z. Li, S. Zhang, and S. Cui, “Medical-vlbert: Medical visual language bert for covid-19 ct report generation with alternate learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 9, pp. 3786–3797, 2021.
  19. C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, and N. V. Chawla, “A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 1409–1416.
  20. Q. Song, B. Sun, and S. Li, “Multimodal sparse transformer network for audio-visual speech recognition,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, 2022.
  21. N. Zhang, “Learning adversarial transformer for symbolic music generation,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–10, 2020.
  22. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proceedings of AAAI, 2021.
  23. G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A transformer-based framework for multivariate time series representation learning,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 2114–2124.
  24. R. Nawaz, H. Nisar, and Y. V. Voon, “The effect of music on human brain; frequency domain and time series analysis using electroencephalogram,” IEEE Access, vol. 6, pp. 45 191–45 205, 2018.
  25. M. Rhif, A. Ben Abbes, I. R. Farah, B. Martínez, and Y. Sang, “Wavelet transform application for/in non-stationary time-series analysis: A review,” Applied Sciences, vol. 9, no. 7, 2019.
  26. E. L. Denton et al., “Unsupervised learning of disentangled representations from video,” Advances in neural information processing systems, vol. 30, 2017.
  27. Z. Yang, H. Yu, Y. He, W. Sun, Z.-H. Mao, and A. Mian, “Fully convolutional network-based self-supervised learning for semantic segmentation,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, 2022.
  28. X. Wang and A. Gupta, “Unsupervised learning of visual representations using videos,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 2794–2802.
  29. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “work for contrastive learning of visual representations,” in Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 119, 13–18 Jul 2020, pp. 1597–1607.
  30. C. Liu, Y. Yao, D. Luo, Y. Zhou, and Q. Ye, “Self-supervised motion perception for spatiotemporal representation learning,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2022.
  31. L. Yang and S. Hong, “Omni-granular ego-semantic propagation for self-supervised graph representation learning,” in International Conference on Machine Learning.   PMLR, 2022, pp. 25 022–25 037.
  32. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  33. M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “Spanbert: Improving pre-training by representing and predicting spans,” Transactions of the Association for Computational Linguistics, vol. 8, pp. 64–77, 2020.
  34. Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “Ernie: Enhanced language representation with informative entities,” arXiv preprint arXiv:1905.07129, 2019.
  35. X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum contrastive learning,” arXiv preprint arXiv:2003.04297, 2020.
  36. M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised learning of visual features,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 132–149.
  37. M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised learning of visual features by contrasting cluster assignments,” Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924, 2020.
  38. Y. Zheng, M. Jin, S. Pan, Y.-F. Li, H. Peng, M. Li, and Z. Li, “Toward graph self-supervised learning with contrastive adjusted zooming,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2022.
  39. H. Zhang, J. Y. Koh, J. Baldridge, H. Lee, and Y. Yang, “Cross-modal contrastive learning for text-to-image generation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 833–842.
  40. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16 000–16 009.
  41. J. Jiang, J. Chen, and Y. Guo, “A dual-masked auto-encoder for robust motion capture with spatial-temporal skeletal token completion,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 5123–5131.
  42. Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu, “Ts2vec: Towards universal representation of time series,” arXiv preprint arXiv:2106.10466, 2021.
  43. A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio.” SSW, vol. 125, p. 2, 2016.
  44. L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining,” in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009, pp. 947–956.
  45. Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings of the 26th annual international conference on machine learning, 2009, pp. 41–48.
  46. P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, and T. Schaeffter, “Ptb-xl, a large publicly available electrocardiography dataset,” Scientific data, vol. 7, no. 1, pp. 1–15, 2020.
  47. A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals,” circulation, vol. 101, no. 23, pp. e215–e220, 2000.
  48. D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz, “A public domain dataset for human activity recognition using smartphones,” in Proceedings of the 21th international European symposium on artificial neural networks, computational intelligence and machine learning, 2013, pp. 437–442.
  49. B. Kemp, A. H. Zwinderman, B. Tuk, H. A. Kamphuisen, and J. J. Oberye, “Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 9, pp. 1185–1194, 2000.
  50. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  51. E. Eldele, Z. Chen, C. Liu, M. Wu, C.-K. Kwoh, X. Li, and C. Guan, “An attention-based deep learning approach for sleep stage classification with single-channel eeg,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 809–818, 2021.
  52. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  53. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” arXiv preprint arXiv:2209.00796, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wenrui Zhang (20 papers)
  2. Ling Yang (88 papers)
  3. Shijia Geng (11 papers)
  4. Shenda Hong (56 papers)
Citations (26)