Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability Enforced Bandit Algorithms for Channel Selection in Remote State Estimation of Gauss-Markov Processes (2205.09923v4)

Published 20 May 2022 in eess.SY, cs.SY, and eess.SP

Abstract: In this paper we consider the problem of remote state estimation of a Gauss-Markov process, where a sensor can, at each discrete time instant, transmit on one out of M different communication channels. A key difficulty of the situation at hand is that the channel statistics are unknown. We study the case where both learning of the channel reception probabilities and state estimation is carried out simultaneously. Methods for choosing the channels based on techniques for multi-armed bandits are presented, and shown to provide stability. Furthermore, we define the performance notion of estimation regret, and derive bounds on how it scales with time for the considered algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.