Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT's Semantic Segmentation (2205.09722v1)

Published 19 May 2022 in cs.CV

Abstract: With the COVID-19 global pandemic, computer-assisted diagnoses of medical images have gained much attention, and robust methods of Semantic Segmentation of Computed Tomography (CT) became highly desirable. Semantic Segmentation of CT is one of many research fields of automatic detection of COVID-19 and has been widely explored since the COVID-19 outbreak. In this work, we propose an extensive analysis of how different data augmentation techniques improve the training of encoder-decoder neural networks on this problem. Twenty different data augmentation techniques were evaluated on five different datasets. Each dataset was validated through a five-fold cross-validation strategy, thus resulting in over 3,000 experiments. Our findings show that spatial level transformations are the most promising to improve the learning of neural networks on this problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.