Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Highly tree-connected complementary modulo factors with bounded degrees (2205.09715v1)

Published 19 May 2022 in math.CO

Abstract: Let $G$ be a bipartite graph with bipartition $(X,Y)$, let $k$ be a positive integer, and let $f:V(G)\rightarrow Z_k$ be a mapping with $\sum_{v\in X}f(v) \stackrel{k}{\equiv}\sum_{v\in Y}f(v)$. In this paper, we show that if $G$ is $(2m+2m_0+4k-4)$-edge-connected and $m+m_0>0$, then $G$ has an $m$-tree-connected factor $H$ such that its complement is $m_0$-tree-connected and for each vertex $v$, $d_H(v)\stackrel{k}{\equiv} f(v)$, and $$\lfloor\frac{d_G(v)}{2}\rfloor-(k-1)-m_0\le d_{H}(v)\le \lceil\frac{d_G(v)}{2}\rceil+k-1+m.$$ Next, we generalize this result to general graphs and derive a sufficient degree condition for a highly edge-connected general graph $G$ to have a connected factor $H$ such that for each vertex $v$, $d_H(v)\in {f(v),f(v)+k}$. Finally, we show that every $(4k-2)$-tree-connected graph admits a bipartite connected factor whose degrees are divisible by $k$.

Summary

We haven't generated a summary for this paper yet.