Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phylogeny-Inspired Adaptation of Multilingual Models to New Languages (2205.09634v2)

Published 19 May 2022 in cs.CL

Abstract: Large pretrained multilingual models, trained on dozens of languages, have delivered promising results due to cross-lingual learning capabilities on variety of language tasks. Further adapting these models to specific languages, especially ones unseen during pre-training, is an important goal towards expanding the coverage of language technologies. In this study, we show how we can use language phylogenetic information to improve cross-lingual transfer leveraging closely related languages in a structured, linguistically-informed manner. We perform adapter-based training on languages from diverse language families (Germanic, Uralic, Tupian, Uto-Aztecan) and evaluate on both syntactic and semantic tasks, obtaining more than 20% relative performance improvements over strong commonly used baselines, especially on languages unseen during pre-training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fahim Faisal (20 papers)
  2. Antonios Anastasopoulos (111 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.