Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Networks in Imandra: Matrix Representation as a Verification Choice (2205.09556v2)

Published 19 May 2022 in cs.LO and cs.PL

Abstract: The demand for formal verification tools for neural networks has increased as neural networks have been deployed in a growing number of safety-critical applications. Matrices are a data structure essential to formalising neural networks. Functional programming languages encourage diverse approaches to matrix definitions. This feature has already been successfully exploited in different applications. The question we ask is whether, and how, these ideas can be applied in neural network verification. A functional programming language Imandra combines the syntax of a functional programming language and the power of an automated theorem prover. Using these two key features of Imandra, we explore how different implementations of matrices can influence automation of neural network verification.

Citations (2)

Summary

We haven't generated a summary for this paper yet.