Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plane Geometry Diagram Parsing (2205.09363v1)

Published 19 May 2022 in cs.CV

Abstract: Geometry diagram parsing plays a key role in geometry problem solving, wherein the primitive extraction and relation parsing remain challenging due to the complex layout and between-primitive relationship. In this paper, we propose a powerful diagram parser based on deep learning and graph reasoning. Specifically, a modified instance segmentation method is proposed to extract geometric primitives, and the graph neural network (GNN) is leveraged to realize relation parsing and primitive classification incorporating geometric features and prior knowledge. All the modules are integrated into an end-to-end model called PGDPNet to perform all the sub-tasks simultaneously. In addition, we build a new large-scale geometry diagram dataset named PGDP5K with primitive level annotations. Experiments on PGDP5K and an existing dataset IMP-Geometry3K show that our model outperforms state-of-the-art methods in four sub-tasks remarkably. Our code, dataset and appendix material are available at https://github.com/mingliangzhang2018/PGDP.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ming-Liang Zhang (10 papers)
  2. Fei Yin (36 papers)
  3. Yi-Han Hao (1 paper)
  4. Cheng-Lin Liu (71 papers)
Citations (24)