Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Adversarial Attack in Multi-agent Reinforcement Learning (2205.09362v2)

Published 19 May 2022 in cs.AI

Abstract: Cooperative multi-agent reinforcement learning (cMARL) has many real applications, but the policy trained by existing cMARL algorithms is not robust enough when deployed. There exist also many methods about adversarial attacks on the RL system, which implies that the RL system can suffer from adversarial attacks, but most of them focused on single agent RL. In this paper, we propose a \textit{sparse adversarial attack} on cMARL systems. We use (MA)RL with regularization to train the attack policy. Our experiments show that the policy trained by the current cMARL algorithm can obtain poor performance when only one or a few agents in the team (e.g., 1 of 8 or 5 of 25) were attacked at a few timesteps (e.g., attack 3 of total 40 timesteps).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yizheng Hu (1 paper)
  2. Zhihua Zhang (118 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.