Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GRACE-C: Generalized Rate Agnostic Causal Estimation via Constraints (2205.09235v4)

Published 18 May 2022 in stat.ML, cs.AI, and cs.LG

Abstract: Graphical structures estimated by causal learning algorithms from time series data can provide misleading causal information if the causal timescale of the generating process fails to match the measurement timescale of the data. Existing algorithms provide limited resources to respond to this challenge, and so researchers must either use models that they know are likely misleading, or else forego causal learning entirely. Existing methods face up-to-four distinct shortfalls, as they might 1) require that the difference between causal and measurement timescales is known; 2) only handle very small number of random variables when the timescale difference is unknown; 3) only apply to pairs of variables; or 4) be unable to find a solution given statistical noise in the data. This research addresses these challenges. Our approach combines constraint programming with both theoretical insights into the problem structure and prior information about admissible causal interactions to achieve multiple orders of magnitude in speed-up. The resulting system maintains theoretical guarantees while scaling to significantly larger sets of random variables (>100) without knowledge of timescale differences. This method is also robust to edge misidentification and can use parametric connection strengths, while optionally finding the optimal solution among many possible ones.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com