Topological phases of unitary dynamics: Classification in Clifford category (2205.09141v3)
Abstract: A quantum cellular automaton (QCA) or a causal unitary is by definition an automorphism of local operator algebra, by which local operators are mapped to local operators. Quantum circuits of small depth, local Hamiltonian evolutions for short time, and translations (shifts) are examples. A Clifford QCA is one that maps any Pauli operator to a finite tensor product of Pauli operators. Here, we obtain a complete table of groups $\mathfrak C(\mathsf d,p)$ of translation invariant Clifford QCA in any spatial dimension $\mathsf d \ge 0$ modulo Clifford quantum circuits and shifts over prime $p$-dimensional qudits, where the circuits and shifts are allowed to obey only coarser translation invariance. The group $\mathfrak C(\mathsf d,p)$ is nonzero only for $\mathsf d = 2k+3$ if $p=2$ and $\mathsf d = 4k+3$ if $p$ is odd where~$k \ge 0$ is any integer, in which case $\mathfrak C(\mathsf d,p) \cong \widetilde{\mathfrak W}(\mathbb F_p)$, the classical Witt group of nonsingular quadratic forms over the finite field $\mathbb F_p$. It is well known that $\widetilde{\mathfrak W}(\mathbb F_2) \cong \mathbb Z/2\mathbb Z$, $\widetilde{\mathfrak W}(\mathbb F_p) \cong \mathbb Z/4\mathbb Z$ if $p = 3 \bmod 4$, and $\widetilde{\mathfrak W}(\mathbb F_p)\cong \mathbb Z/2\mathbb Z \oplus \mathbb Z/2\mathbb Z$ if $p = 1 \bmod 4$. The classification is achieved by a dimensional descent, which is a reduction of Laurent extension theorems for algebraic $L$-groups of surgery theory in topology.
- J. Watrous, On one-dimensional quantum cellular automata, in Proceedings of IEEE 36th Annual Foundations of Computer Science (1995) pp. 528–537.
- B. Schumacher and R. F. Werner, Reversible quantum cellular automata, . ., . (2004), arXiv:quant-ph/0405174 .
- C. W. von Keyserlingk and S. L. Sondhi, Phase structure of one-dimensional interacting floquet systems. i. abelian symmetry-protected topological phases, Physical Review B 93, 245145 (2016a), 1602.02157 .
- C. W. von Keyserlingk and S. L. Sondhi, Phase structure of one-dimensional interacting floquet systems. ii. symmetry-broken phases, Physical Review B 93, 245146 (2016b), 1602.06949 .
- Lukasz Fidkowski, Jeongwan Haah, and Matthew B. Hastings, An exactly solvable model for a 4+1D41𝐷4+1D4 + 1 italic_D beyond-cohomology symmetry protected topological phase, Phys. Rev. B 101, 155124 (2020), arXiv:1912.05565 .
- Dominic V. Else and Chetan Nayak, Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge, Phys. Rev. B 90, 235137 (2014), arXiv:1409.5436 [cond-mat.str-el] .
- Daniel Ranard, Michael Walter, and Freek Witteveen, A converse to Lieb–Robinson bounds in one dimension using index theory, Ann. Henri Poincaré 23, 3905–3979 (2022), arXiv:2012.00741 .
- M. Freedman and M. B. Hastings, Classification of quantum cellular automata, Commun. Math. Phys. 376, 1171–1222 (2020), arXiv:1902.10285 .
- Jeongwan Haah, Clifford quantum cellular automata: Trivial group in 2d and Witt group in 3d, J. Math. Phys. 62, 092202 (2021a), arXiv:1907.02075 .
- Jeongwan Haah, Lukasz Fidkowski, and Matthew B. Hastings, Nontrivial quantum cellular automata in higher dimensions, Commun. Math. Phys. ., . (2022), arXiv:1812.01625 .
- A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2–111 (2006), arXiv:cond-mat/0506438 .
- Kevin Walker and Zhenghan Wang, (3+1)-TQFTs and topological insulators, Frontiers of Physics 7, 150–159 (2011), arXiv:1104.2632 .
- Yu-An Chen and Po-Shen Hsin, Exactly solvable lattice hamiltonians and gravitational anomalies, . ., . (2021), arXiv:2110.14644 .
- Lukasz Fidkowski, Jeongwan Haah, and Matthew B. Hastings, Gravitational anomaly of 3+1313+13 + 1 dimensional Z2subscript𝑍2Z_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT toric code with fermionic charges and fermionic loop self-statistics, Phys. Rev. B 106, 165135 (2022), arXiv:2110.14654 .
- Kevin Walker, (2019), private communication.
- Michael A. Levin and Xiao-Gang Wen, String-net condensation: a physical mechanism for topological phases, Physical Review B 71, 045110 (2005), arXiv:cond-mat/0404617 .
- Alexei Davydov, Dmitri Nikshych, and Victor Ostrik, On the structure of the Witt group of braided fusion categories, Sel. Math. New Ser. 19, 237–269 (2013b), arXiv:1109.5558 .
- Jeongwan Haah, Classification of translation invariant topological Pauli stabilizer codes for prime dimensional qudits on two-dimensional lattices, J. Math. Phys. 62, 012201 (2021b), arXiv:1812.11193 .
- C. T. C. Wall, On the axiomatic foundations of the theory of Hermitian forms, Math. Proc. Cambridge Phil. Soc. 67, 243–250 (1970).
- Y. P. Solov’ev, Algebraik K-theory of quadratic forms, J. Math. Sci. 44, 319–371 (1989).
- A. A. Ranicki, Algebraic L𝐿Litalic_L-theory, I: Foundations, Proc. London Math. Soc. s3-27, 101–125 (1973a).
- A. A. Ranicki, Algebraic L𝐿Litalic_L-theory, II: Laurent extensions, Proc. London Math. Soc. s3-27, 126–158 (1973b).
- Jeongwan Haah, Commuting Pauli Hamiltonians as maps between free modules, Commun. Math. Phys. 324, 351–399 (2013), arXiv:1204.1063 .
- Blazej Ruba and Bowen Yang, Homological invariants of pauli stabilizer codes, . ., . (2022), arXiv:2204.06023 .
- S. P. Novikov, Algebraic construction and properties of Hermitian analogs of k𝑘kitalic_k-theory over rings with involution from the viewpoint of Hamiltonian formalism. applications to differential topology and the theory of characteristic classes. I, Math. USSR Izv. 4, 257 (1970a).
- S. P. Novikov, Algebraic construction and properties of Hermitian analogs of k𝑘kitalic_k-theory over rings with involution from the viewpoint of Hamiltonian formalism. applications to differential topology and the theory of characteristic classes. II, Math. USSR Izv. 4, 479 (1970b).
- Michael Freedman, Jeongwan Haah, and Matthew B. Hastings, The group structure of quantum cellular automata, Commun. Math. Phys. 389, 1277–1302 (2022), arXiv:1910.07998 .
- A. A. Suslin, On the structure of the special linear group over polynomial rings, Mathematics of the USSR-Izvestiya 11, 221 (1977).
- Richard G. Swan, Projective modules over Laurent polynomial rings, Transactions of the American Mathematical Society 237, 111–120 (1978).
- Serge Lang, Algebra, revised 3rd ed. (Springer, 2002).
- Ignacio Cirac Norbert Schuch, David Perez-Garcia, Classifying quantum phases using Matrix Product States and PEPS, Phys. Rev. B 84, 165139 (2011), arXiv:1010.3732 .
- C. T. C. Wall, Surgery on Compact Manifolds, edited by A. A. Ranicki (American Mathematical Society, 1999).
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc 72, 358–426 (1966).