Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VRAG: Region Attention Graphs for Content-Based Video Retrieval (2205.09068v1)

Published 18 May 2022 in cs.CV and cs.MM

Abstract: Content-based Video Retrieval (CBVR) is used on media-sharing platforms for applications such as video recommendation and filtering. To manage databases that scale to billions of videos, video-level approaches that use fixed-size embeddings are preferred due to their efficiency. In this paper, we introduce Video Region Attention Graph Networks (VRAG) that improves the state-of-the-art of video-level methods. We represent videos at a finer granularity via region-level features and encode video spatio-temporal dynamics through region-level relations. Our VRAG captures the relationships between regions based on their semantic content via self-attention and the permutation invariant aggregation of Graph Convolution. In addition, we show that the performance gap between video-level and frame-level methods can be reduced by segmenting videos into shots and using shot embeddings for video retrieval. We evaluate our VRAG over several video retrieval tasks and achieve a new state-of-the-art for video-level retrieval. Furthermore, our shot-level VRAG shows higher retrieval precision than other existing video-level methods, and closer performance to frame-level methods at faster evaluation speeds. Finally, our code will be made publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kennard Ng (1 paper)
  2. Ser-Nam Lim (116 papers)
  3. Gim Hee Lee (135 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.