Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Advantages of Dense-Vector to One-Hot Encoding of Intent Classes in Out-of-Scope Detection Tasks (2205.09021v1)

Published 18 May 2022 in cs.LG and cs.AI

Abstract: This work explores the intrinsic limitations of the popular one-hot encoding method in classification of intents when detection of out-of-scope (OOS) inputs is required. Although recent work has shown that there can be significant improvements in OOS detection when the intent classes are represented as dense-vectors based on domain specific knowledge, we argue in this paper that such gains are more likely due to advantages of dense-vector to one-hot encoding methods in representing the complexity of the OOS space. We start by showing how dense-vector encodings can create OOS spaces with much richer topologies than one-hot encoding methods. We then demonstrate empirically, using four standard intent classification datasets, that knowledge-free, randomly generated dense-vector encodings of intent classes can yield massive, over 20% gains over one-hot encodings, and also outperform the previous, domain knowledge-based, SOTA of one of the datasets. We finish by describing a novel algorithm to search for good dense-vector encodings and present initial but promising experimental results of its use.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Claudio Pinhanez (10 papers)
  2. Paulo Cavalin (8 papers)
Citations (1)