Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ramsey Quantifiers over Automatic Structures: Complexity and Applications to Verification (2205.09015v3)

Published 18 May 2022 in cs.LO

Abstract: Automatic structures are infinite structures that are finitely represented by synchronized finite-state automata. This paper concerns specifically automatic structures over finite words and trees (ranked/unranked). We investigate the "directed version" of Ramsey quantifiers, which express the existence of an infinite directed clique. This subsumes the standard "undirected version" of Ramsey quantifiers. Interesting connections between Ramsey quantifiers and two problems in verification are firstly observed: (1) reachability with B\"{u}chi and generalized B\"{u}chi conditions in regular model checking can be seen as Ramsey quantification over transitive automatic graphs (i.e., whose edge relations are transitive), (2) checking monadic decomposability (a.k.a. recognizability) of automatic relations can be viewed as Ramsey quantification over co-transitive automatic graphs (i.e., the complements of whose edge relations are transitive). We provide a comprehensive complexity landscape of Ramsey quantifiers in these three cases (general, transitive, co-transitive), all between NL and EXP. In turn, this yields a wealth of new results with precise complexity, e.g., verification of subtree/flat prefix rewriting, as well as monadic decomposability over tree-automatic relations. We also obtain substantially simpler proofs, e.g., for NL complexity for monadic decomposability over word-automatic relations (given by DFAs).

Citations (3)

Summary

We haven't generated a summary for this paper yet.