Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The BLUES function method for second-order partial differential equations: application to a nonlinear telegrapher equation (2205.08823v1)

Published 18 May 2022 in physics.comp-ph, cs.NA, and math.NA

Abstract: An analytic iteration sequence based on the extension of the BLUES (Beyond Linear Use of Equation Superposition) function method to partial differential equations (PDEs) with second-order time derivatives is studied. The original formulation of the BLUES method is modified by introducing a matrix formalism that takes into account the initial conditions for higher-order time derivatives. The initial conditions of both the solution and its derivatives now play the role of a source vector. The method is tested on a nonlinear telegrapher equation, which can be reduced to a nonlinear wave equation by a suitable choice of parameters. In addition, a comparison is made with three other methods: the Adomian decomposition method, the variational iteration method (with Green function) and the homotopy perturbation method. The matrix BLUES function method is shown to be a worthwhile alternative for the other methods.

Summary

We haven't generated a summary for this paper yet.