Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation to Address Out-of-Vocabulary Problem in Low-Resource Sinhala-English Neural Machine Translation (2205.08722v1)

Published 18 May 2022 in cs.CL

Abstract: Out-of-Vocabulary (OOV) is a problem for Neural Machine Translation (NMT). OOV refers to words with a low occurrence in the training data, or to those that are absent from the training data. To alleviate this, word or phrase-based Data Augmentation (DA) techniques have been used. However, existing DA techniques have addressed only one of these OOV types and limit to considering either syntactic constraints or semantic constraints. We present a word and phrase replacement-based DA technique that consider both types of OOV, by augmenting (1) rare words in the existing parallel corpus, and (2) new words from a bilingual dictionary. During augmentation, we consider both syntactic and semantic properties of the words to guarantee fluency in the synthetic sentences. This technique was experimented with low resource Sinhala-English language pair. We observe with only semantic constraints in the DA, the results are comparable with the scores obtained considering syntactic constraints, and is favourable for low-resourced languages that lacks linguistic tool support. Additionally, results can be further improved by considering both syntactic and semantic constraints.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Aloka Fernando (6 papers)
  2. Surangika Ranathunga (34 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.