Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gender and Racial Bias in Visual Question Answering Datasets (2205.08148v3)

Published 17 May 2022 in cs.CV and cs.CY

Abstract: Vision-and-language tasks have increasingly drawn more attention as a means to evaluate human-like reasoning in machine learning models. A popular task in the field is visual question answering (VQA), which aims to answer questions about images. However, VQA models have been shown to exploit language bias by learning the statistical correlations between questions and answers without looking into the image content: e.g., questions about the color of a banana are answered with yellow, even if the banana in the image is green. If societal bias (e.g., sexism, racism, ableism, etc.) is present in the training data, this problem may be causing VQA models to learn harmful stereotypes. For this reason, we investigate gender and racial bias in five VQA datasets. In our analysis, we find that the distribution of answers is highly different between questions about women and men, as well as the existence of detrimental gender-stereotypical samples. Likewise, we identify that specific race-related attributes are underrepresented, whereas potentially discriminatory samples appear in the analyzed datasets. Our findings suggest that there are dangers associated to using VQA datasets without considering and dealing with the potentially harmful stereotypes. We conclude the paper by proposing solutions to alleviate the problem before, during, and after the dataset collection process.

Citations (39)

Summary

We haven't generated a summary for this paper yet.