Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Apprenticeship Learning for Playing Games (2205.07959v1)

Published 16 May 2022 in cs.LG, cs.AI, and cs.CV

Abstract: In the last decade, deep learning has achieved great success in machine learning tasks where the input data is represented with different levels of abstractions. Driven by the recent research in reinforcement learning using deep neural networks, we explore the feasibility of designing a learning model based on expert behaviour for complex, multidimensional tasks where reward function is not available. We propose a novel method for apprenticeship learning based on the previous research on supervised learning techniques in reinforcement learning. Our method is applied to video frames from Atari games in order to teach an artificial agent to play those games. Even though the reported results are not comparable with the state-of-the-art results in reinforcement learning, we demonstrate that such an approach has the potential to achieve strong performance in the future and is worthwhile for further research.

Citations (2)

Summary

We haven't generated a summary for this paper yet.