Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature and Instance Joint Selection: A Reinforcement Learning Perspective (2205.07867v1)

Published 12 May 2022 in cs.LG and cs.AI

Abstract: Feature selection and instance selection are two important techniques of data processing. However, such selections have mostly been studied separately, while existing work towards the joint selection conducts feature/instance selection coarsely; thus neglecting the latent fine-grained interaction between feature space and instance space. To address this challenge, we propose a reinforcement learning solution to accomplish the joint selection task and simultaneously capture the interaction between the selection of each feature and each instance. In particular, a sequential-scanning mechanism is designed as action strategy of agents, and a collaborative-changing environment is used to enhance agent collaboration. In addition, an interactive paradigm introduces prior selection knowledge to help agents for more efficient exploration. Finally, extensive experiments on real-world datasets have demonstrated improved performances.

Citations (1)

Summary

We haven't generated a summary for this paper yet.