Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the rigidity of Arnoux-Rauzy words (2205.07707v3)

Published 16 May 2022 in cs.DM

Abstract: An infinite word generated by a substitution is rigid if all the substitutions which fix this word are powers of a same substitution. Sturmian words as well as characteristic Arnoux-Rauzy words are known to be rigid. In the present paper, we prove that all Arnoux-Rauzy words are rigid. The proof relies on two main ingredients: firstly, the fact that the primitive substitutions that fix an Arnoux-Rauzy word share a common power, and secondly, the notion of normal form of an episturmian substitution (i.e., a substitution that fixes an Arnoux-Rauzy word). The main difficulty is then of a combinatorial nature and relies on the normalization process when taking powers of episturmian substitutions: the normal form of a square is not necessarily equal to the square of the normal forms.

Summary

We haven't generated a summary for this paper yet.