Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Latent Concepts Learned in BERT (2205.07237v1)

Published 15 May 2022 in cs.CL

Abstract: A large number of studies that analyze deep neural network models and their ability to encode various linguistic and non-linguistic concepts provide an interpretation of the inner mechanics of these models. The scope of the analyses is limited to pre-defined concepts that reinforce the traditional linguistic knowledge and do not reflect on how novel concepts are learned by the model. We address this limitation by discovering and analyzing latent concepts learned in neural network models in an unsupervised fashion and provide interpretations from the model's perspective. In this work, we study: i) what latent concepts exist in the pre-trained BERT model, ii) how the discovered latent concepts align or diverge from classical linguistic hierarchy and iii) how the latent concepts evolve across layers. Our findings show: i) a model learns novel concepts (e.g. animal categories and demographic groups), which do not strictly adhere to any pre-defined categorization (e.g. POS, semantic tags), ii) several latent concepts are based on multiple properties which may include semantics, syntax, and morphology, iii) the lower layers in the model dominate in learning shallow lexical concepts while the higher layers learn semantic relations and iv) the discovered latent concepts highlight potential biases learned in the model. We also release a novel BERT ConceptNet dataset (BCN) consisting of 174 concept labels and 1M annotated instances.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Fahim Dalvi (45 papers)
  2. Abdul Rafae Khan (8 papers)
  3. Firoj Alam (75 papers)
  4. Nadir Durrani (48 papers)
  5. Jia Xu (87 papers)
  6. Hassan Sajjad (64 papers)
Citations (50)

Summary

We haven't generated a summary for this paper yet.